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Abstract

Discontinuous Galerkin (DG) methods have proved to be well suited for the construction of robust high-order numer-
ical schemes on unstructured and possibly nonconforming grids for a variety of problems. Their application to the incom-
pressible Navier–Stokes (INS) equations has also been recently considered, although the subject is far from being fully
explored. In this work, we propose a new approach for the DG numerical solution of the INS equations written in con-
servation form. The inviscid numerical fluxes both in the continuity and in the momentum equation are computed using
the values of velocity and pressure provided by the (exact) solution of the Riemann problem associated with a local arti-
ficial compressibility perturbation of the equations. Unlike in most of the existing methods, artificial compressibility is here
introduced only at the interface flux level, therefore resulting in a consistent discretization of the INS equations irrespec-
tively of the amount of artificial compressibility introduced. The discretization of the viscous term follows the well-
established DG scheme named BR2. The performance and the accuracy of the method are demonstrated by computing
the Kovasznay flow and the two-dimensional lid-driven cavity flow for a wide range of Reynolds numbers and for various
degrees of polynomial approximation.
� 2006 Elsevier Inc. All rights reserved.

PACS: 47.10.ad; 47.11.Fg

Keywords: Incompressible Navier–Stokes equations; Discontinuous Galerkin methods; Artificial compressibility; Riemann solver
1. Introduction

Discontinuous Galerkin (DG) methods have proved to be suited for the construction of robust high-order
numerical schemes on arbitrary unstructured and possibly nonconforming grids for a wide variety of prob-
lems. The application of the DG space discretization to incompressible fluid flows has also been considered
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in a few recent works. In [1], Liu and Shu introduce a DG method for 2D incompressible flows in stream func-
tion formulation, whereby the DG approximation is applied to the momentum equation, while a continuous
finite element approximation of the stream function is computed by a standard Poissons solver. In a series of
papers [2–4] Cockburn and coworkers propose and thoroughly analyze the local discontinuous Galerkin
(LDG) method for the Stokes, Oseen and INS equations respectively. In all cases, the problem is discretized
using a fully discontinuous approach and the authors propose expressions of the numerical fluxes associated
with the Laplacian and the incompressibility constraint, which are based on analogous recipes. In this paper,
we also apply the DG discretization to the primitive variable form of the INS equations, but we introduce a
novel formulation of the inviscid numerical flux, which relies on the solution of a Riemann problem for the
incompressible Euler equations with a suitably relaxed incompressibility constraint.

One of the key ingredients of DG methods is the formulation of interface (numerical) fluxes, which provide a
weak coupling between the unknowns in neighbouring elements. In the inviscid compressible case, the numer-
ical flux is often computed by exploiting the hyperbolic nature of the equations as the (approximate or exact)
solution of a Riemann problem. In the incompressible case, however, the equations are no longer hyperbolic
due to the lack of the unsteady term in the continuity equation and it is therefore not possible to compute
the interface flux following the same approach. In this paper, we circumvent this difficulty by adding an artificial

compressibility term to the continuity equation so as to recover the hyperbolic nature of the problem. The flux
computation can then mimic the procedure followed in the compressible case.

The idea of relaxing the incompressibility constraint by adding an artificial compressibility term has been
known for a long time and has been extensively used in finite volume as well as in finite element approxima-
tions of the INS equations. It is important to remark that this old idea is here exploited in a new way in that it
is deployed only for the construction of the interface fluxes. This entails that the DG discretization here intro-
duced is always a strongly consistent approximation of the INS equations since, independently of the amount
of artificial compressibility added, the interface flux reduces to the physical one for vanishing interface jumps.
The numerical experiments show indeed a limited dependence of the computed solution from the amount of
artificial compressibility introduced.

To complete the DG space discretization of the INS equations we follow the same approach introduced in
[5] for the compressible viscous case, i.e. we handle the viscous term separately and for its discretization we use
the well established DG BR2 scheme introduced in [6] and referred to as BRMPS in [7]. A complete survey and
analysis of DG methods for elliptic problems can be found therein. Finally, the semi-discrete equations are
integrated in time with a fully implicit method.

The numerical results presented below show that the inviscid and viscous interface fluxes here proposed
provide a stabilization of the discretized form of the INS problem, which allows for high Reynolds number
computations and equal order approximation. The performance of the proposed method is demonstrated
by computing several classical test cases for a wide range of Reynolds numbers: thorough testing has been
done on Kovasznay’s analytical solutions of the Navier–Stokes equations (see [8]), and on the lid-driven cavity
flow problem for Reynolds number up to 20,000 (see [9–11]).

The paper is organized as follows: in Section 2 we describe the DG discretization of the INS equations; in Sec-
tion 3 we discuss some implementation issues; Section 4 is devoted to the numerical results and Section 5 to the
conclusions. The derivation of the exact solution of the Riemann problem for the incompressible Navier–Stokes,
Oseen and Stokes equations perturbed by artificial compressibility is thoroughly described in Appendix A.

2. DG approximation of the incompressible Navier–Stokes equations

The incompressible Navier–Stokes equations read
ou

ot
� $ � ðm$uÞ þ u � $uþ $p ¼ g;

$ � u ¼ 0;
ð1Þ
in [0, t] · X, X � RN , where N 2 {2, 3} is the number of space dimensions, u denotes the velocity vector and
p = P/q is the pressure divided by the density. For the sake of simplicity, we assume that Dirichlet boundary
conditions for the velocity u are prescribed on the boundary, i.e.
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u ¼ f on oX. ð2Þ

By virtue of the incompressibility constraint, the momentum equation can be alternatively written in conser-
vation form as
ou

ot
� $ � ðm$uÞ þ $ � Fðu; pÞ ¼ g; ð3Þ
where the flux F(u,p) is given by
Fðu; pÞ ¼def
u� uþ pI ¼ uiuj þ pdij.
2.1. Incompressible Euler equations

We proceed as discussed in the introduction by treating the viscous and inviscid parts independently. We
first consider the space discretization of the inviscid incompressible Navier–Stokes (or incompressible Euler)
equations
ou

ot
þ $ � Fðu; pÞ ¼ g;

$ � u ¼ 0.
ð4Þ
The weak form of the incompressible Euler equations reads: find (u,p) 2 [H1(X)]N · L2(X) such that
Z
X

v � ou

ot
dx�

Z
X

$v : Fðu; pÞdxþ
Z

oX
v� n : Fðu; pÞdr ¼

Z
X

v � gdx;Z
X

q$ � udx ¼ 0

ð5Þ
for all (v,q) 2 [H1(X)]N · L2(X).
In order to construct a DG discretization of Eq. (5), we consider a triangulation Th ¼ fKg of an approx-

imation Xh of X, that is we partition Xh into a set of non-overlapping elements K (not necessarily simplices).
We denote with E0

h the set of internal element faces, with E@
h the set of boundary element faces and with

Eh ¼ E0
h [ E@

h their union. We moreover set
C0
h ¼

[
e2E0

h

e; C@
h ¼

[
e2E@h

e; Ch ¼ C0
h [ C@

h . ð6Þ
The solution is approximated on Th as a piecewise polynomial function possibly discontinuous on element
interfaces, i.e. we assume the following space settings for the approximate solution uh and ph:
uh 2 Vh ¼
def½V h�N ; ph 2 Qh ¼

def V h; ð7Þ

with
V h ¼
def

vh 2 L2ðXÞ : vhjK 2 PkðKÞ 8K 2Th

� �

for some polynomial order k P 1, being PkðKÞ the space of polynomials of global degree at most k on the
element K.

In order to simplify the presentation, it is convenient to introduce some trace operators which generalize
those defined in [7]. On a generic internal face e 2 E0

h, see Fig. 1, we define
svt ¼def
vþ � nþ þ v� � n�; sqt ¼def qþnþ þ q�n�;

½q� ¼def qþ � q�; fqg ¼def qþ þ q�

2
;

ð8Þ
where v denotes a generic vector quantity and q a generic scalar quantity. Notice that svb is a tensor quantity,
and sqb is a vector quantity, i.e. this operator always increases the tensor rank by one. These definitions can be



Fig. 1. Normals and local frame at quadrature point P on edge e.
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suitably extended to faces intersecting oX accounting for the weak imposition of the Dirichlet datum. The
weak imposition of boundary conditions is discussed in Section 3.3.

The discrete counterpart of Eq. (5) for a generic element K 2Th then reads
Z
K

vh �
ouh

ot
dx�

Z
K

$hvh : Fðuh; phÞdxþ
Z

oK
vh � n : FðuhjK ; phjKÞdr ¼

Z
K

vh � gdx;

�
Z

K
$hqh � uh dxþ

Z
oK

qhuhjK � ndr ¼ 0;

ð9Þ
where we integrated by parts the continuity equation. To introduce a coupling between the degrees of freedom
belonging to adjacent elements and to ensure conservation, we substitute the fluxes F(uhjK,phjK) and uhjK with
suitably defined numerical fluxes bFðuþh ; pþh ; u�h ; p

�
h Þ and ûðuþh ; pþh ; u�h ; p

�
h Þ. The stability and accuracy properties

of the method strongly depend on the choice of such numerical fluxes, which is therefore of great importance.
Summing Eq. (9) over the elements we obtain the DG formulation of problem (5) which then requires to

find (uh,ph) 2 Vh · Qh such that
Z
Xh

vh �
ouh

ot
dx�

Z
Xh

$hvh : Fðuh; phÞdxþ
Z

Ch

svht : bFðuþh ; pþh ; u�h ; p
�
h Þdr ¼

Z
Xh

vh � gdx;

�
Z

Xh

$hqh � uh dxþ
Z

Ch

sqht � ûðuþh ; pþh ; u�h ; p
�
h Þdr ¼ 0

ð10Þ
for all (vh,qh) 2 Vh · Qh.
The key idea adopted to compute bF and û is to reduce the problem of flux computation to the solution of a

planar Riemann problem as in the compressible case. In order to recover the hyperbolic character of the equa-
tions, the incompressibility constraint is relaxed by adding an artificial compressibility term to the continuity
equation. At each quadrature point P on Ch we therefore solve the Riemann problem for the equations
1

c2

op
ot
þ ou

ox
¼ 0;

ou
ot
þ oðu2 þ pÞ

ox
¼ 0;

ov
ot
þ ouv

ox
¼ 0;

ð11Þ
with initial datum
ðu; pÞ ¼
ðu�h ; p�h Þ if x < 0;

ðuþh ; pþh Þ if x > 0;

�

with initial datum
ðu; pÞ ¼
ðu�h ; p�h Þ if x < 0;

ðuþh ; pþh Þ if x > 0;

�

where x denotes a locally defined axis oriented as the normal vector n+ pointing out of K+ and located in such
a way that x = 0 at P, see Fig. 1.

Denoting with (u*,p*) the solution of the Riemann problem on the space-time line x/t = 0, we finally set
bFðuþh ; pþh ; u�h ; p
�
h Þ ¼ Fðu�; p�Þ; ûðuþh ; pþh ; u�h ; p

�
h Þ ¼ u�.
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On boundary faces where the Dirichlet boundary conditions are prescribed the role of the variable on the exte-
rior is played by the datum.

The procedure adopted for the determination of the state (u*,p*) is thoroughly discussed in Appendix A for the
case of the incompressible Euler equations as well as for the Stokes and Oseen equations, which we consider for
the purpose of comparison with existing methods. It is worth noticing that, unlike in [2–4], we do not split the
numerical flux related to the advection term from that related to the pressure term, thus establishing a stronger
link between pressure and velocity which seems to enhance the properties of the method. A detailed analysis of the
method for the Stokes and Incompressible Euler problems has recently been made in [12, Chapters 4 and 5].

2.2. Navier–Stokes equations

Many techniques are available for the DG space discretization of the viscous term: a complete survey can
be found in [7]. Several schemes can be traced back to the following general framework:
Z

Xh

m$hvh : $huh dx�
Z

Ch

m svht : f$huhg þ suht : f$hvhgð Þdrþ aðvh; uhÞ; ð12Þ
where the boundary integral is in fact a consistency term and a(Æ, Æ) is a suitable penalty term. In this paper we
choose the form of the penalty term first proposed in [6], which reads
a vh; uhð Þ ¼
X
e2Eh

ge

Z
Xh

mreðsvhtÞ : reðsuhtÞdx;
where re : ½L2ðeÞ�N
2

! Rh is the lifting operator defined as the solution of the following problem:
Z
Xh

reðwÞ : sh dx ¼ �
Z

e
w : fshgdr; 8sh 2 Rh; w 2 ½L1ðeÞ�N

2

; ð13Þ
e being a generic face and Rh ¼
def½V h�N

2

. It is possible to find lower bounds for the parameter ge 2 Rþ ensuring
stability of the method. This form for the penalty term was obtained by first writing a mixed formulation for
the elliptic term, choosing proper numerical fluxes and then eliminating the auxiliary variable. We refer the
interested reader to [7] for the details.

Keeping in mind the discussion above, the space discretization of the incompressible Navier–Stokes equa-
tions reads: find (uh,ph) 2 Vh · Qh such that
Z

Xh

vh �
ouh

ot
dxþ

Z
Xh

m$hvh : $huh dx�
Z

Ch

m svht : f$huhg þ suht : f$hvhgð Þdrþ aðvh; uhÞ

�
Z

Xh

$hvh : Fðuh; phÞdxþ
Z

Ch

svht : bFðuþh ; pþh ; u�h ; p
�
h Þdr ¼

Z
Xh

vh � g dx;

�
Z

Xh

$hqh � uh dxþ
Z

Ch

sqht � ûðuþh ; pþh ; u�h ; p
�
h Þdr ¼ 0

ð14Þ
for all (vh,qh) 2 Vh · Qh.

3. Implementation issues

In this section, we shall give some implementation details. We start by deriving a form of Eq. (14) which is
closer to implementation. The viscous penalty term can be re-written as follows:
aðvh; uhÞ ¼
X
e2Eh

ge

Z
Xh

mreðsvhtÞ : reðsuhtÞdx ¼ �
X
e2Eh

ge

Z
e

msvht : fresuhtgdr; ð15Þ
where we simply applied definition (13). Moreover, introducing the symbol
rðsuhtÞ ¼def
X
e2Eh

reðsuhtÞ
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it is possible to show that one part of the consistency term in the discretization of the Laplacian acts indeed as
a gradient correction. Summarizing the above remarks, we obtain the following equivalent form for Eq. (14):
find (uh,ph) 2 Vh · Qh such that
Z

Xh

vh �
ouh

ot
dx�

Z
Xh

$hvh : ðFvð$huh; rÞ þ Fðuh; phÞÞdx

þ
Z

Ch

svht : bFvð$huþh ; r
þ
e ; $hu�h ; r

�
e Þ þ bFðuþh ; pþh ; u�h ; p

�
h Þ

� �
dr ¼

Z
Xh

vh � gdx;

�
Z

Xh

$hqh � uh dxþ
Z

Ch

sqht � ûðuþh ; pþh ; u�h ; p
�
h Þdr ¼ 0

ð16Þ
for all (vh,qh) 2 Vh · Qh, where we introduced the viscous fluxes
Fvð$huh; rÞ ¼
def�mð$huh þ rðsuhtÞÞ;bFvð$huþh ; r
þ
e ; $u�h ; r

�
e Þ ¼

def�mðf$huhg þ gefreðsuhtÞgÞ.
3.1. Basis functions and numerical integration

According to Eq. (7), the test and trial functions are polynomials of degree k within each element K 2Th.
Let �xK � ð�xK

1 ; . . . ;�xK
N Þ be the coordinates of the centroid of a generic element K 2Th. The basis functions of

the polynomial approximation of degree k associated with K are the scaled monomials
uK
i ¼

QN
l¼1ðxl � �xK

l Þ
ai;l

k
QN

l¼1ðxl � �xK
l Þ

ai;lk0;K

;
XN

l¼1

ai;l 6 k; ð17Þ
where ai,1, . . . ,ai,N are N nonnegative integers. The number of degrees of freedom for each component of uh

and for ph within each element is given by
NK
DOF ¼ dimfuig ¼

QN
l¼1ðk þ lÞ

N !
.

Having defined the basis functions in each element K 2Th, the polynomial approximation of uh and ph within
K is given by
uK
h ¼

XNK
DOF

i¼1

uK
i UK

i ; pK
h ¼

XNK
DOF

i¼1

uK
i P K

i ; ð18Þ
where UK
i and P K

i are the degrees of freedom of the unknown velocity and pressure fields on K 2Th. The basis
functions defined in Eq. (17) are also used to express the scalar and each component of the vector and tensor
test functions.

All integrals appearing in Eq. (16) are computed by means of Gauss integration rules with a number of inte-
gration points suited for the required accuracy. Cheaper non-product formulae are preferred to tensor product
ones when available. The quadrature formulae are taken from the encyclopædia of cubature formulae devel-
oped and maintained by Cools [13].

The numerical evaluation of volume and surface integrals in Eq. (16) requires to compute the basis func-
tions at Gauss quadrature nodes. The coordinates xG of each integration point in the physical frame are given
by xG = x(nG), where nG are the coordinates of Gauss quadrature nodes in the reference element and the func-
tions x(n) define the (possibly nonlinear) mapping between the reference and the physical element. Notice that
by defining the basis functions directly in the physical space one can obtain a polynomial form for the final
algebraic expression of the integral of a polynomial function even if the mapping between the reference
and the physical element is not linear.

3.2. Lifting operator

Let e � oK+ \ oK� be an internal face of the triangulation. According to its definition, the lifting operator
applied to the jump of the velocity on e, re(suhb), is a second order tensor. Let us introduce the symbol re,l(suhb)
to denote the vector corresponding to its lth column, i.e.
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re;lðsuhtÞ ¼def½ðreðsuhtÞÞi;l�i¼1;...;N .
We then have by Eq. (13) that re(suhb) is indeed the solution of the following problems:
Z
Xh

re;lðsuhtÞ � vh dx ¼ �
Z

e
l � suht � fvhgdr; 8vh 2 Vh; l ¼ 1; . . . ;N ; ð19Þ
l being the unit vector corresponding to the l-th space dimension. After some algebra it is possible to show
that the above problem is indeed a local problem involving the mass matrices of the elements sharing e.
Denoting with RK

e;l the local vector of degrees of freedom associated to re,l(suhb) on element K, the local
problem reads
MKþ 0

0 MK�

" #
RKþ

e;l

RK�

e;l

" #
¼

NKþ ;Kþ

e;l NKþ;K�

e;l

NK� ;Kþ

e;l NK�;K�

e;l

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Ne;l

UKþ

UK�

" #
; l ¼ 1; . . . ;N ;
where MK indicates the local mass matrix on element K, Ne,l is the matrix corresponding to the bilinear
form defined by the right-hand side of Eq. (19) and, according to the notation introduced in (18), the ma-
trix–vector products have to be intended block-wise. From the above equation we immediately deduce that
the following relation holds between the degrees of freedom of re(suhb) and those of the velocity on the ele-
ments sharing e:
RK
e;l ¼

X
H2fKþ;K�g

ðMKÞ�1
NK;H

e;l UH ; K 2 fKþ;K�g; l ¼ 1; . . . ;N .
The above fact is actually used in the computation of the lifting operator. The NK;H
e;l as well as the elementary

mass matrices are computed in a preliminary step and the products ðMKÞ�1
NK;H

e;l are stored at the beginning of
the computation.
3.3. Boundary conditions and time discretization

The DG discretization is best suited for a weak enforcement of boundary conditions. For Dirichlet type
boundary data, which is the case of the computations presented below, this can easily be achieved by properly
defining a boundary state ub

h, pb
h which, together with the internal state uþh , pþh , allows to compute the numerical

fluxes û, bF and the function rþe on the portion C@
h of the boundary Ch. Moreover the averages f$huhg and

{re(suhb)} in bFv are set equal to the internal values.
For the Stokes and Oseen problems computed in this paper the boundary state is simply set equal to the

projection of the analytical solution onto the discrete space. This state takes the place of u�h , p�h in the jump
operators of Eq. (8) and in the numerical fluxes û and bF whilst in the lifting operator rþe the average of the test
function is set equal to the internal value.

On the other hand, the wall-type boundary conditions of the lid-driven cavity flow have been implemented
by defining the boundary state on the exterior of boundary faces as ub

h ¼ u�h ¼ �uþh þ 2zw, pb
h ¼ p�h ¼ pþh , where

zw is the velocity of a possibly sliding wall. In this case, therefore, the external boundary state exactly replaces
u�h and p�h in the jump operators, in the numerical fluxes and in the lifting operator.

The discrete problem corresponding to Eq. (16) reads, in matrix form
M
dW

dt
þ aðWÞ ¼ bðgÞ; ð20Þ
where W is the global vector of unknown degrees of freedom and M is the global block diagonal mass matrix.
Lacking the time derivative of pressure in the governing equations, the blocks of M corresponding to the pres-
sure degrees of freedom are identically zero. Eq. (20) defines a system of (nonlinear) ODEs which has been
discretized by means of the implicit backward Euler scheme. By linearizing at time level n, we are led to solve
the following linear problem at each time step:
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M

Dt
þ oaðWnÞ

oW

� 	
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

A

ðWnþ1 �WnÞ ¼ �aðWnÞ þ bðgÞ; ð21Þ
where oa(Wn)/oW is the Jacobian matrix of the DG space discretization and the symbol A denotes the linear
system matrix. The matrix A can be regarded as an NK · NK block sparse matrix where NK is the number of
elements in Th and the rank of each block is N K

DOF 	 ðN þ 1Þ. Thanks to the DG discretization here adopted
the degrees of freedom of a generic element K are only coupled with those of the neighbouring elements and
the number of nonzero blocks for each (block) row K of the matrix A is therefore equal to the number of ele-
ments surrounding the element K plus one.

The Jacobian matrix of the DG discretization has been computed analytically without any approximation
and, using very large time steps, the method can therefore achieve quadratic convergence in the computation
of steady state solutions (in the limit Dt!1, Eq. (21) is in fact identical to one iteration of the Newton
method applied to the steady form of Eq. (20)). Preliminary computations of unsteady INS flows using more
accurate time discretization schemes have already shown the promising potentialities of the method. This topic
will be the subject of a future work.

Finally, we mention that the linear system of Eq. (21) can be solved using either direct or iterative solvers.
For all the computations presented below we have used the direct solver available in PETSc [14], the software
upon which our DG code relies for the purpose of parallelization.

4. Numerical results

In this section, we provide thorough testing of the method applied to the Stokes, Oseen and Navier–Stokes
equations. For the Stokes case, we used the analytical solution reported in [2]. For the Oseen and Navier–
Stokes cases we used the Kovasznay and the lid-driven cavity flow problems. A short description of the test
cases is given below.

4.1. Stokes problem

We consider the analytical solution to the Stokes system with g = 0 given by
uðx; yÞ ¼ � expðxÞðy cos y þ sin yÞ;
vðx; yÞ ¼ expðxÞy sin y;
pðx; yÞ ¼ 2 expðxÞ sin y.
The computational domain was taken to be (�1,1)2 and Dirichlet boundary conditions, computed from the
analytical solution, were imposed on oX.

4.2. Kovasznay problem

This analytical solution for the two-dimensional Navier–Stokes equations with g = 0 was derived by Kov-
asznay in [8]. The analytical expression for the velocity and the pressure is
uðx; yÞ ¼ 1� expðkxÞ cosð2pyÞ;

vðx; yÞ ¼ k
2p

expðkxÞ sinð2pyÞ;

pðx; yÞ ¼ � 1

2
expð2kxÞ þ C;
where the parameter k depends on the Reynolds number Re according to the following relation:
k ¼ Re
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re2

4
þ 4p2

s
;

and C is an arbitrary constant. The same problem can be used as a benchmark for the Oseen equations provided
we assume the advection field given by the analytical solution u. The computational domain considered is
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X ¼ �1
2
; 3

2

� �
	 ð0; 2Þ
with prescribed Dirichlet boundary conditions on oX.

4.3. Lid-driven cavity flow

The lid-driven cavity flow is one of the most extensively studied problems in fluid dynamics. It consists of
solving the incompressible flow in the square cavity (0,1)2 where homogeneous Dirichlet boundary conditions
are imposed for the velocity except on the upper edge, where the velocity is (1,0). Despite its simple geometry,
the lid-driven cavity flow displays some features, which are challenging for any numerical method: the solution
in the upper corners of the cavity is singular and, increasing the Reynolds number, the flow configuration
rapidly changes and multiple counter rotating vortices with largely different sizes appear. The results are com-
pared with those presented in [9–11].

4.4. Computational details

The cases for which an analytical solution is available were run on uniform Pk rectangular meshes of size
h = 21�r with r = 4, . . . , 9, and hence from 8 · 8 to 256 · 256 elements. Also the lid-driven cavity flow was dis-
cretized with rectangular Pk elements, but the meshes were refined towards the boundaries. The maximum grid
spacing hmax = 4.5 · 10�2 was the same for the three Reynolds numbers considered, whilst the minimum grid
spacing was reduced (and the grid size increased) as the Reynolds number was increased, i.e. hmin = 3.8 · 10�3

(60 · 60 elements) at Re = 1000, hmin = 1.2 · 10�3 (80 · 80 elements) at Re = 10,000, hmin = 8.5 · 10�4

(88 · 88 elements) at Re = 20,000.
As regards the value of the artificial compressibility parameter c, we present the results of the Stokes prob-

lem for two fixed values of c, namely 1 and 0.1, chosen on the basis of numerical experiments, and for c vary-
ing as 1/h according to the analysis presented in [12, Chapter 4]. Since for the Oseen and Navier–Stokes case
an analysis is not available yet, we have chosen to present the results for three values of the parameter c, 1, m/h
and 0.1, in order to estimate the sensitivity of the method.

4.5. Comments

The velocity plots and the convergence results for the Stokes and Kovasznay problems are shown in Fig. 2
and in Tables 1–9. The monitored quantities are the L2 errors of the velocity and pressure and the residual of
Fig. 2. Results for the Stokes and Kovasznay problems.



Table 1
Convergence results for the Stokes equations with P1 elements

c Grid size ieui0 iepi0 ie$Æui0

Error Order Error Order Error Order

1 32 · 32 1.01e�3 2.00 3.35e�3 1.46 1.44e�3 1.36
64 · 64 2.53e�4 1.99 1.19e�3 1.49 5.63e�4 1.35
128 · 128 6.38e�5 1.99 4.14e�4 1.53 2.13e�4 1.41

1/h 32 · 32 1.00e�3 2.00 7.87e�3 1.09 9.36e�4 1.44
64 · 64 2.52e�4 1.99 3.76e�3 1.07 3.65e�4 1.36
128 · 128 6.36e�5 1.99 1.82e�3 1.04 1.39e�4 1.39

10�1 32 · 32 1.01e�3 2.01 2.91e�3 1.47 1.71e�3 1.40
64 · 64 2.54e�4 1.99 9.85e�4 1.56 6.62e�4 1.37
128 · 128 6.39e�5 1.99 3.40e�4 1.53 2.44e�4 1.44

Table 2
Convergence results for the Stokes equations with P2 elements

c Grid size ieui0 iepi0 ie$Æui0

Error Order Error Order Error Order

1 16 · 16 9.36e�5 3.01 2.87e�4 2.16 9.66e�4 1.99
32 · 32 1.16e�5 3.01 7.55e�5 1.93 2.44e�4 1.98
64 · 64 1.45e�6 3.00 2.05e�5 1.88 6.17e�5 1.98

1/h 16 · 16 9.33e�5 3.01 4.34e�4 1.91 9.63e�4 1.95
32 · 32 1.16e�5 3.01 1.25e�4 1.79 2.48e�4 1.96
64 · 64 1.45e�6 3.00 3.41e�5 1.88 6.29e�5 1.98

10�1 16 · 16 9.48e�5 3.02 2.92e�4 2.35 9.78e�4 2.05
32 · 32 1.17e�5 3.01 6.62e�5 2.14 2.42e�4 2.02
64 · 64 1.46e�6 3.01 1.63e�5 2.02 6.03e�5 2.00

Table 3
Convergence results for the Stokes equations with P3 elements

c Grid size ieui0 iepi0 ie$Æui0

Error Order Error Order Error Order

1 8 · 8 2.87e�5 4.00 1.54e�4 2.84 3.08e�4 2.96
16 · 16 1.78e�6 4.01 2.10e�5 2.88 3.93e�5 2.97
32 · 32 1.10e�7 4.01 2.82e�6 2.90 5.02e�6 2.97

1/h 8 · 8 2.86e�5 4.00 1.89e�4 2.74 3.04e�4 2.93
16 · 16 1.76e�6 4.01 2.67e�5 2.82 3.98e�5 2.93
32 · 32 1.10e�7 4.01 3.60e�6 2.89 5.12e�6 2.96

10�1 8 · 8 2.89e�5 4.00 1.18e�4 2.97 2.99e�4 3.05
16 · 16 1.79e�6 4.02 1.56e�5 2.91 3.65e�5 3.03
32 · 32 1.11e�7 4.01 2.12e�6 2.88 4.56e�6 3.00
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the incompressibility constraint, denoted as ie$Æui0. All the errors were normalized with respect to the domain
measure.

In the Stokes case the results for c = 1/h are like those reported in [2] and it is shown in [12] that this is
consistent with the theoretical comparison of the method here proposed with that introduced in [2]. An inter-
esting remark is that, when c is taken of order 1, superconvergence is observed for the pressure, whose error
apparently scales with order equal to k + 1/2 for P1 elements.



Table 6
Convergence results for the Oseen equations with P3 elements

c Grid size ieui0 iepi0 ie$Æui0

Error Order Error Order Error Order

1 8 · 8 3.98e�3 3.73 6.93e�3 3.18 3.56e�2 2.90
16 · 16 2.53e�4 3.94 6.72e�4 3.37 4.83e�3 2.88
32 · 32 1.59e�5 4.00 6.42e�5 3.39 6.40e�4 2.92
64 · 64 9.88e�7 4.01 6.88e�6 3.22 8.23e�5 2.96

m/h 8 · 8 3.90e�3 3.74 6.66e�3 3.19 3.75e�2 2.97
16 · 16 2.53e�4 3.94 6.67e�4 3.32 4.87e�3 2.95
32 · 32 1.59e�5 4.00 6.60e�5 3.38 6.36e�4 2.94
64 · 64 9.87e�7 4.01 7.43e�6 3.15 8.17e�5 2.96

10�1 8 · 8 3.92e�3 3.73 6.62e�3 3.18 3.86e�2 2.96
16 · 16 2.55e�4 3.94 6.75e�4 3.29 4.94e�3 2.96
32 · 32 1.59e�5 4.00 6.31e�5 3.42 6.38e�4 2.95
64 · 64 9.89e�7 4.01 6.65e�6 3.25 8.12e�5 2.97

Table 5
Convergence results for the Oseen equations with P2 elements

c Grid size ieui0 iepi0 ie$Æui0

Error Order Error Order Error Order

1 16 · 16 3.54e�3 3.01 8.12e�3 2.40 4.15e�2 2.24
32 · 32 4.31e�4 3.04 1.33e�3 2.61 9.23e�3 2.17
64 · 64 5.27e�5 3.03 2.18e�4 2.61 2.20e�3 2.07
128 · 128 6.53e�6 3.01 3.98e�5 2.48 5.47e�4 2.01

m/h 16 · 16 3.56e�3 3.05 8.16e�3 2.45 4.21e�2 2.35
32 · 32 4.30e�4 3.05 1.33e�3 2.61 9.16e�3 2.20
64 · 64 5.26e�5 3.03 2.28e�4 2.55 2.20e�3 2.06
128 · 128 6.52e�6 3.01 4.44e�5 2.36 5.49e�4 2.01

10�1 16 · 16 3.61e�3 3.06 8.15e�3 2.49 4.38e�2 2.36
32 · 32 4.33e�4 3.06 1.31e�3 2.64 9.31e�3 2.23
64 · 64 5.28e�5 3.04 2.08e�4 2.65 2.19e�3 2.09
128 · 128 6.52e�6 3.02 3.64e�5 2.51 5.42e�4 2.01

Table 4
Convergence results for the Oseen equations with P1 elements

c Grid size ieui0 iepi0 ie$Æui0

Error Order Error Order Error Order

1 32 · 32 1.03e�2 2.09 2.03e�2 1.81 6.68e�2 1.90
64 · 64 2.47e�3 2.06 5.30e�3 1.94 1.63e�2 2.03
128 · 128 6.10e�4 2.02 1.31e�3 2.01 4.10e�3 2.00
256 · 256 1.53e�4 2.00 3.25e�4 2.01 1.14e�3 1.84

m/h 32 · 32 1.03e�2 2.16 2.03e�2 1.81 6.68e�2 1.95
64 · 64 2.43e�3 2.06 5.78e�3 1.83 1.46e�2 2.11
128 · 128 6.02e�4 2.01 1.89e�3 1.61 3.56e�3 2.04
256 · 256 1.51e�4 1.99 7.90e�4 1.26 9.48e�4 1.91

10�1 32 · 32 1.05e�2 2.18 1.95e�2 1.88 7.26e�2 2.01
64 · 64 2.48e�3 2.08 5.04e�3 1.95 1.72e�2 2.08
128 · 128 6.11e�4 2.02 1.22e�3 2.04 4.21e�3 2.03
256 · 256 1.53e�4 2.00 2.97e�4 2.04 1.16e�3 1.86
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Table 9
Convergence results for the Navier–Stokes equations with P3 elements

c Grid size ieui0 iepi0 ie$Æui0

Error Order Error Order Error Order

1 8 · 8 3.92e�3 3.75 7.46e�3 3.43 3.52e�2 2.95
16 · 16 2.54e�4 3.95 6.98e�4 3.42 4.82e�3 3.08
32 · 32 1.59e�5 4.00 6.66e�5 3.39 6.42e�4 2.91
64 · 64 9.88e�7 4.01 7.09e�6 3.23 8.27e�5 2.96

m/h 8 · 8 3.93e�3 3.76 7.23e�3 3.42 3.65e�2 3.02
16 · 16 2.54e�4 3.95 6.95e�4 3.38 4.84e�3 2.92
32 · 32 1.59e�5 4.00 6.79e�5 3.35 6.38e�4 2.92
64 · 64 9.87e�7 4.01 7.54e�6 3.17 8.19e�5 2.96

10�1 8 · 8 3.92e�3 3.76 7.12e�3 3.42 3.72e�2 3.02
16 · 16 2.55e�4 3.94 7.03e�4 3.34 4.90e�3 2.93
32 · 32 1.59e�5 4.00 6.59e�5 3.41 6.45e�4 2.93
64 · 64 9.89e�7 4.01 6.98e�6 3.24 8.24e�5 2.97

Table 8
Convergence results for the Navier–Stokes equations with P2 elements

c Grid size ieui0 iepi0 ie$Æui0

Error Order Error Order Error Order

1 16 · 16 3.52e�3 3.05 7.30e�3 2.49 4.08e�2 2.28
32 · 32 4.29e�4 3.04 1.21e�3 2.59 9.13e�3 2.16
64 · 64 5.26e�5 3.03 2.04e�4 2.56 2.20e�3 2.06
128 · 128 6.52e�6 3.01 3.78e�5 2.44 5.47e�4 2.01

m/h 16 · 16 3.52e�3 3.09 7.3e�3 2.54 4.12e�2 2.35
32 · 32 4.28e�4 3.04 1.22e�3 2.58 9.08e�3 2.18
64 · 64 5.25e�5 3.03 2.16e�4 2.50 2.20e�3 2.05
128 · 128 6.51e�6 3.01 4.32e�5 2.32 5.49e�4 2.00

10�1 16 · 16 3.55e�3 3.11 7.15e�3 2.59 4.24e�2 2.36
32 · 32 4.30e�4 3.04 1.18e�3 2.60 9.20e�3 2.20
64 · 64 5.26e�5 3.03 1.96e�4 2.60 2.19e�3 2.07
128 · 128 6.52e�6 3.01 3.58e�5 2.45 5.44e�4 2.01

Table 7
Convergence results for the Navier–Stokes equations with P1 elements

c Grid size ieui0 iepi0 ie$Æui0

Error Order Error Order Error Order

1 32 · 32 9.95e�3 2.06 1.81e�2 1.88 6.33e�2 1.82
64 · 64 2.43e�3 2.03 4.74e�3 1.93 1.61e�2 1.98
128 · 128 6.08e�4 2.00 1.20e�3 1.98 4.10e�3 1.97
256 · 256 1.52e�4 1.99 3.11e�4 1.95 1.14e�3 1.84

m/h 32 · 32 9.86e�3 2.09 1.86e�2 1.84 6.04e�2 1.92
64 · 64 2.40e�3 2.04 5.40e�3 1.78 1.46e�2 2.05
128 · 128 6.01e�4 2.00 1.84e�3 1.55 3.62e�3 2.01
256 · 256 1.52e�4 1.99 7.86e�4 1.23 9.72e�4 1.90

10�1 32 · 32 1.01e�2 2.13 1.73e�2 1.99 6.77e�2 1.89
64 · 64 2.45e�3 2.04 4.51e�3 1.94 1.68e�2 2.01
128 · 128 6.09e�4 2.01 1.13e�3 2.00 4.20e�3 2.00
256 · 256 1.53e�4 1.99 2.90e�4 1.96 1.16e�3 1.86
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The Oseen case cannot be traced back to the method presented in [3] due to the different handling of the
convective term. Tables 4–6 show that, as it could be expected, the velocity converges with order k + 1, while
superconvergence is again observed for the pressure, which converges with order k + 1 in the P1 case and with
order between k and k + 1/2 in the P2 and P3 cases, for c ¼ Oð1Þ. Both here and in the Stokes case, the scaling
of the incompressibility parameter c with the mesh size seems to be harmful with respect to the potentiality of
the method.

Similar considerations hold true for the results obtained in the Navier–Stokes case, where again the pres-
sure appears to converge with order 2 in the P1 case and with order between k and k + 1/2 when k P 2. When
comparing these results with those presented in [4], we notice not only that our method achieves a higher order
of convergence for the pressure, but also that the absolute errors are significantly smaller, suggesting smaller
values for the constants in the convergence estimates with respect to those in [4]. The analysis of the supercon-
vergence results will be the subject of a future work.

For both linear problems we also evaluated the condition number KA of the matrix A in Eq. (21) for
Dt!1, i.e. the condition number of the Jacobian matrix derived from the DG space discretization. It is quite
Kovasznay problem.Stokes problem.

Fig. 3. Matrix condition number for the Stokes and Oseen equations (c = 1).

Effect of artificial compressibility. Dependence on velocity error.

Fig. 4. Matrix condition number for the Oseen equations.
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easy to observe in Figs. 3(a) and (b) that, decreasing the grid size, the growing rate of KA is not dependent on
the degree of the polynomial approximation and is equal to 3, i.e. halving the mesh size the condition number
becomes eight times bigger. Two more results of the numerical experiments with the Oseen equations concern
the behaviour of KA as a function of the artificial compressibility parameter c and of the error of the numerical
solution, for different degrees of polynomial approximation and grid sizes. Fig. 4(a) shows that there is a
broad range of values of c, around c = 1 and not dependent on k, for which KA is slowly changing, whereas
a rapid growth is observed outside this range. Fig. 4(b) indicates that in the region of small errors on the veloc-
ity, i.e. the left part of the graphic, we obtain better condition numbers with the higher order approximations.
Similar results hold for the pressure.

As regards the lid-driven cavity flow, the results of the computations are summarized in Figs. 5–7. For the
three Reynolds numbers considered our method proved able to mimic the available results with great accu-
racy. The method proved highly stable and a steady solution was found even for the highest Reynolds number
case, i.e. Re = 20,000. The physical relevance of this result, however, should be considered with some caution
Fig. 5. Results for the lid-driven cavity flow (Re = 1000).



(a)  u- and v-velocity on vertical and hori-
zontal centerlines.

(b)  u- and v-velocity on vertical and hori-
zontal centerlines: P1, P2 and P3 solutions.

Fig. 6. Results for the lid-driven cavity flow (Re = 10,000).

Fig. 7. Results for the lid-driven cavity flow (Re = 20,000).
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because the strong damping properties of the backward Euler scheme could have altered the physics of the
flow by suppressing physical instabilities.

We close this section with a final comment on the boundary condition for pressure in the lid-driven cavity
flow. For this problem, in fact, the wall boundary condition for pressure outlined in Section 3.3 leaves the
pressure field defined up to an additive constant. From a numerical point of view the consequence is that
the problem matrix has rank one unit less than the number of unknowns. The problem can be solved in
the customary way by eliminating one degree of freedom. In continuous finite elements approximations, how-
ever, this may give rise to a bad behaviour of the solution in the neighborhood of the deleted node when no
special care is paid. Such a phenomenon is not observed in the DG approximation proposed in this work.
5. Conclusions

In this work we presented an artificial compressibility numerical flux for the DG approximation of the
incompressible Navier–Stokes equations. The key idea is to add an artificial compressibility-like perturbation
for the sole purpose of inter-element flux computation, thus recovering a hyperbolic problem. With respect to
other methods presented in the literature, this requires the solution of a nonlinear equation in order to obtain
the values of the unknowns to be used in flux evaluation, which, however, does not entail a sensible variation
of computational cost. Although originally thought for the Navier–Stokes equations, the method can be easily
applied to the Stokes and Oseen cases.

Numerical validation was provided by testing the method against a number of well-known benchmark
problems. In all cases, the method exhibited superconvergence for the pressure for the artificial compressibility
parameter of order 1. Improvement in terms of accuracy seems also to be present with respect to other meth-
ods. The theoretical investigation of these results is the subject of ongoing work.
Appendix A. Riemann solvers

In this section we describe the exact Riemann solver for the computation of the inviscid numerical fluxesbFð�; �; �; �Þ and ûð�; �; �; �Þ in the Navier–Stokes, Oseen and Stokes cases. We refer interested readers to [15]
for previous work on Riemann solvers with artificial compressibility for the incompressible Navier–Stokes
equations.

A.1. Riemann solver for the Navier–Stokes equations

With reference to Eq. (11), in the Navier–Stokes case we have to solve the Riemann problem for the non-
linear system
ow

ot
þ oFðwÞ

ox
¼ 0; ðA:1Þ
with initial datum
w ¼
wL if x < 0;

wR if x > 0;

�

where the unknown w and the flux F(w) are given by
w ¼
p

u

v

264
375; FðwÞ ¼

c2u

u2 þ p

uv

264
375; ðA:2Þ
being v the tangential component of the velocity (a scalar in 2D, a vector in 3D). In the sequel we give a de-
tailed exposition for the 2D case and point out a simple way to generalize the results to the 3D case. The Jaco-
bian matrix A = oF(w)/ow and the left and the right eigenvectors matrices L and R are given by
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A ¼
0 c2 0

1 2u 0

0 v u

264
375; L ¼

1 u� a 0

1 uþ a 0

1 u � a2

v

2664
3775; R ¼ 1

2a

uþ a �uþ a 0

�1 1 0
v
a

v
a

� 2v
a

2664
3775; ðA:3Þ
and the eigenvalues of A are
k� ¼ u� a; kþ ¼ uþ a; k0 ¼ u; ðA:4Þ

where
a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ c2

p
ðA:5Þ
plays the same role as the speed of sound in the compressible Euler equations. By the definition of a it is read-
ily seen that k� < 0 and k+ > 0.

The solution of the Riemann problem entails four states separated by two centered waves, hereafter called
‘‘left’’ and ‘‘right’’ waves, and by a contact discontinuity, across which the sole tangential velocity component
can vary. The left and right waves can be either shocks or centered isentropic rarefactions, depending on the
initial data. As shown in Fig. A.1, the star denotes the region of the solution holding on the x/t = 0 line. After
characterizing the Riemann invariants and writing the Rankine–Hugoniot jump conditions, in Section A.1.3 we
will describe how to find the state u*, p* in the star region for all possible cases of left and right waves, while in
Section A.1.4 we will describe the procedure to obtain v*, the tangential velocity component on the x/t = 0 line.

A.1.1. Riemann invariants

We first characterize the Riemann invariants C±,0(p,u,v) of problem (A.1). By definition, the gradients of
the Riemann invariants are the left eigenvectors of A, i.e. the rows of L (see Eq. A.3). The Riemann invariants
C±,0 assume constant values along the ‘‘characteristic curves’’ C±,0 of equation x±,0(t) and slope dx±,0(t)/
dt = k±,0, i.e.
dC
;0 ¼ 0 along x
;0ðtÞ;
dx
dt
¼ k
;0.
We therefore obtain
dC� ¼ dp þ ðu� aÞdu ¼ 0 on C�; ðA:6aÞ
dCþ ¼ dp þ ðuþ aÞdu ¼ 0 on Cþ; ðA:6bÞ

dC0 ¼ dp þ udu� a2 dv
v
¼ 0 on C0. ðA:6cÞ
The first two relations can be integrated to get
C� ¼ p þ 1

2
½uðu� aÞ � c2 logðuþ aÞ� ¼ C0

� on C�;

Cþ ¼ p þ 1

2
½uðuþ aÞ þ c2 logðuþ aÞ� ¼ C0

þ on Cþ;
ðA:7Þ
Fig. A.1. Structure of the Riemann problem.
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where C0

 are constant values. Notice that in a left (resp. in a right) rarafection wave, the Riemann invariant C+

(resp. C�) is constant since a left rarefaction is crossed by C+ lines and a right rarefaction by C� lines. The third
Riemann invariant C0 will be exploited in the computation of the tangential velocity component in Section A.1.4.

A.1.2. Rankine–Hugoniot jump conditions

The jumps w2 � w1 and F2 � F1 across a shock are related to each other by the Rankine–Hugoniot relations
Fðw2Þ � Fðw1Þ ¼ sðw2 � w1Þ;

where s denotes the shock speed. We therefore have
c2ðu2 � u1Þ ¼ sðp2 � p1Þ; ðA:8aÞ
u2

2 þ p2 � u2
1 � p1

� �
¼ sðu2 � u1Þ; ðA:8bÞ

ðu2v2 � u1v1Þ ¼ sðv2 � v1Þ. ðA:8cÞ
It is an easy matter to eliminate the jump (p2 � p1) from Eqs. (A.8a) and (A.8b) so as to obtain the shock speed
s as a function of u1 and u2, i.e.
s
 ¼
u1 þ u2

2



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u1 þ u2

2

� �2

þ c2

r
. ðA:9Þ
Notice that s� < 0 and that s+ > 0. The pressure jump (p2 � p1) and the tangential velocity ratio v2/v1 are then
given by
p2 � p1 ¼
c2ðu2 � u1Þ

s

; ðA:10Þ

v2

v1

¼ u1 � s

u2 � s


. ðA:11Þ
A.1.3. Pressure and normal velocity component

The pressure and the normal component of the velocity in the star region can be obtained as a function of
wL and wR by exploiting the preservation of the Riemann invariants across the isentropic rarefactions and the
Rankine–Hugoniot jump conditions across the shocks. Since the pressure always appears linearly in Eq. (A.7)
as well as in Eq. (A.10), it is as easy matter to obtain the pressure jumps in the four possible cases.

� If the left wave is a rarefaction then the C+ Riemann invariant is conserved and
pL þ
1

2
½uLðuL þ aLÞ þ c2 logðuL þ aLÞ� ¼ p� þ

1

2
½u�ðu� þ a�Þ þ c2 logðu� þ a�Þ�;
that is
pL � p� � f R
LW ðuL; u�Þ ¼ 0; ðA:12Þ
with
f R
LW ðuL; u�Þ ¼def 1

2
u�ðu� þ a�Þ þ c2 logðu� þ a�Þ � uLðuL þ aLÞ � c2 logðuL þ aLÞ
 �

.

� If the left wave is a shock we exploit the Rankine–Hugoniot jump condition (A.10) to obtain
pL � p� � f S
LW ðuL; u�Þ ¼ 0; ðA:13Þ
with
f S
LW ðuL; u�Þ ¼def c2ðuL � u�Þ

s�
.

� If the right wave is a rarefaction then the C� Riemann invariant is conserved and
p� � pR þ f R
RW ðu�; uRÞ ¼ 0; ðA:14Þ
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with
f R
RW ðu�; uRÞ ¼

def 1

2
u�ðu� � a�Þ � c2 logðu� þ a�Þ � uRðuR � aRÞ þ c2 logðuR þ aRÞ
 �

.

� If the right wave is a shock equation (A.10) implies
p� � pR þ f S
RW ðu�; uRÞ ¼ 0; ðA:15Þ
with
f S
RW ðu�; uRÞ ¼

def c2ðuR � u�Þ
sþ

.

To solve the problem in the star region we now have two equations in the unknowns u* and p* to be chosen
among the four we derived above according to the nature of the left and right waves. The pressure p* can be
eliminated from Eqs. (A.12)–(A.15), thus obtaining an equation in u* of the form
F ðu�Þ ¼ pL � pR � f X i
LW ðuL; u�Þ þ f X i

RW ðu�; uRÞ ¼ 0; ðA:16Þ

with Xi 2 {S,R}, i = 1,2 depending on the nature of the centered waves, which can be decided by considering
the entropy condition.

In order for the entropy condition to be satisfied, characteristics must converge into a shock, which implies
the inequalities
ðk�ÞL > s� > ðk�Þ� ) uL � aL > u� � a� ) u� < uL;

ðkþÞ� > sþ > ðkþÞR ) u� þ a� > uR þ aR ) u� > uR.
ðA:17Þ
Since, by inspection of Eqs. (A.9) and (A.10), for a left shock the sign of [p] is different from that of [u] while,
for a right shock, the sign of [p] is the same of that of [u], we have that
u� < uL ) p� > pL; u� > uR ) p� > pR; ðA:18Þ

i.e. the entropy satisfying shocks are always compressive.

The value of the velocity component u* in the star region can be obtained by solving the nonlinear Eq.
(A.16) by the Newton method. At each iteration the correct wave pattern is selected by considering Eq.
(A.17). The pressure can then be computed by using one of the equations we combined to get the equation
for u*. A relative convergence tolerance of 10�14 on pressure is typically achieved in 4 or 5 iterations.

A.1.4. Tangential velocity component

The tangential velocity component v* can be obtained by integrating Eq. (A.6c) across the left or right cen-
tered waves depending on the sign of u*.

� If u* > 0 and the left wave is a rarefaction we exploit the fact that the C+ Riemann invariant is preserved to
write
dp ¼ �ðuþ aÞdu.
Substituting in Eq. (A.6c) we find
dv
v
þ du

a
¼ 0;
which, on integration between the left and star states, gives
ln
v�
vL
þ ln

u� þ a�
uL þ aL

¼ 0;
or
v�
vL
¼ uL þ aL

u� þ a�
.
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� If u* > 0 and the left centered wave is a shock we apply Eq. (A.11) to the left and star states to obtain
Table
Solutio

sign(u
*

u
*

> 0

u
*

< 0
v�
vL
¼ uL � s�

u� � s�
.

� If u* < 0 and the wave facing to the right is a rarefaction then the C� Riemann invariant is preserved. Inte-
grating between the star and the right states we find
v�
vR
¼ u� þ a�

uR þ aR
.

� If u* < 0 and the right centered wave is a shock equation (A.11) applied to the star and right states implies
v�
vR
¼ uR � sþ

u� � sþ
.

A.1.5. Generalization to the 3D case

The results above can be generalized to the three-dimensional case by observing that the additional equa-
tion introduced by the third component of the velocity has exactly the same form as the one for the second
component. It is therefore not difficult to realize that the results collected in Table A.1 hold true.

A.2. Riemann solver for the Stokes and Oseen equations

In the homogeneous Stokes case we have to solve the system
ou

ot
� $ � ðm$uÞ þ $p ¼ 0; $ � u ¼ 0. ðA:19Þ
The computation of the interface flux is therefore performed by considering the linear hyperbolic system
op
ot
þ c2 ou

ox
¼ 0;

ou
ot
þ op

ox
¼ 0.

ðA:20Þ
Notice that the equation for the tangential velocity component v has been neglected since it gives
ov
ot
¼ 0 ) v ¼ constant.
The eigenvalues and eigenvectors of the associated matrix are the same as in the Navier–Stokes case (see Eq.
A.4 and A.3) with the substitutions u 0 and, consequently, a c. We therefore have that kS


 ¼ 
c and that
the Riemann invariants CS


 are
CS

 ¼ p 
 cu.
The solution for u* and p* can be obtained by solving the system
CS
þðu�; p�Þ ¼ CS

þðuL; pLÞ; CS
�ðu�; p�Þ ¼ CS

�ðuR; pRÞ;
which gives
A.1
n of the Riemann problem for the tangential velocity component

) Rarefaction Shock

v� ¼ vL
uL þ aL

u� þ a�
v� ¼ vL

uL � s�
u� � s�

v� ¼ vR
u� þ a�
uR þ aR

v� ¼ vR
uR � sþ
u� � sþ
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u� ¼ fug þ
1

2c
½p�;

p� ¼ fpg þ
c
2
½u�.

ðA:21Þ
As noticed above, in this case the third equation gives poor information on the tangential velocity compo-
nent. This is, however, of no importance, since it is easy to realize that it never appears in the boundary
terms.

The solution in the star region has a slightly more complex expression when considering the Oseen
equations
ou

ot
� $ � ðm$uÞ þ b � $uþ $p ¼ 0;

$ � u ¼ 0.
ðA:22Þ
In this case, we have to solve the following linear hyperbolic system
op
ot
þ c2 ou

ox
¼ 0;

ou
ot
þ o bnuþ pð Þ

ox
¼ 0;

ov
ot
þ o bnvð Þ

ox
¼ 0;

ðA:23Þ
where bn indicates the normal component of the advection velocity in the (quadrature) point where we are
solving the Riemann problem. The eigenvalues are
k
 ¼
bn 
 a

2
; k0 ¼ bn;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq
being a ¼def
b2

n þ 4c2. The Riemann invariants CO

;0 are
CO

 ¼ p þ 1

2
ðbn 
 aÞu; CO

0 ¼ bnv.
Notice that these expressions reduce to the Stokes case for bn = 0. The solution for the normal velocity
component and the pressure in the star region can be obtained by solving the system
CO
þðu�; p�Þ ¼ CO

þðuL; pLÞ;
CO
�ðu�; p�Þ ¼ CO

�ðuR; pRÞ;
which gives
u� ¼ fug þ
1

a
½p� þ bn

2a
½u�;

p� ¼ fpg þ
c2

a
½u� � bn

2a
½p�.

ðA:24Þ
Once again, Eq. (A.24) reduce to Eq. (A.21) when b = 0. As regards the tangential velocity component, we
have
CO
0 ðv�Þ ¼

CO
0 ðvLÞ if u� > 0;

CO
0 ðvRÞ if u� < 0;

(

or
v� ¼
vL if u� > 0;

vR if u� < 0;

�

i.e. the tangential velocity component is always taken from the upwind side with respect to u*.
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